Kinetic theory and simulation of collisionless tearing in bifurcated current sheets

نویسنده

  • Tatsuki Matsui
چکیده

Observations from the Earth’s geomagnetic tail have established that the current sheet is often bifurcated with two peaks in the current density. These so-called bifurcated current sheets have also been reported in a variety of simulations and often occur in conjunction with significant temperature anisotropy. In this work, a new self-consistent Vlasov equilibrium is developed that permits both the current profile and temperature anisotropy to be independently adjusted. This new equilibrium has a sufficient flexibility to model a wide variety of bifurcated sheets observed in both kinetic simulations and space observations, and transforms continuously back to the standard Harris sheet model with a single peak in the current density. The linear stability of these layers with respect to the tearing mode is examined in the framework of resistive MHD and full Vlasov theory. From the simplified fluid theory, it is demonstrated that a bifurcated current profile has a stabilizing influence on the resistive tearing instability. However, the resistive MHD model is not really appropriate to model the highly collisionless plasma conditions in the magnetosphere. To obtain reliable predictions, Vlasov theory is required and the approach in this thesis employs both standard analytic techniques and a formally exact treatment in which the full orbit integral is numerically evaluated. The resulting linear growth rate for the collisionless tearing instability and the mode structure are verified with 2D full kinetic particle-in-cell simulations. The simplified analytic theory is reasonably accurate in capturing these dependencies for long wavelength modes, but the short wavelength

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyrokinetic df simulation of the collisionless and semicollisional tearing mode instability

The evolution of collisionless and semicollisional tearing mode instabilities is studied using an electromagnetic gyrokinetic df particle-in-cell simulation model. Drift-kinetic electrons are used. Linear eigenmode analysis is presented for the case of fixed ions and there is excellent agreement with simulation. A double peaked eigenmode structure is seen indicative of a positive D8. Nonlinear ...

متن کامل

Computer Simulation of the Three-dimensionsal De- Cay of Thin Collisionless Current Sheets

Recent theoretical investigations and simulations of collisionless space plasma current sheets have claimed their stabilisation against reconnection by nite cross-sheet magnetic eld components. However, all these theoretical investigations and simulations were based on two-dimensional models. Currrently we have shown that the energy variations change quite a bit as soon as one considers the pro...

متن کامل

Finite element simulation of two-point incremental forming of free-form parts

Two-point incremental forming method is considered a modern technique for manufacturing shell parts. The presence of bottom punch during the process makes this technique far more complex than its conventional counterpart i.e. single-point incremental forming method. Thus, the numerical simulation of this method is an essential task, which leads to the reduction of trial/error costs, predicts th...

متن کامل

Nonlinear evolution of the lower-hybrid drift instability in a current sheet.

The lower-hybrid drift instability is simulated in an ion-scale current sheet using a fully kinetic approach with values of the ion to electron mass ratio up to m(i)/m(e)=1836. Although the instability is localized on the edge of the layer, the nonlinear development increases the electron flow velocity in the central region resulting in a strong bifurcation of the current density and significan...

متن کامل

A model of the bifurcated current sheet

[1] Recent Geotail and Cluster observations revealed that thin current sheets in the near-Earth tail may have a bifurcated structure. In some cases the electrons are found to dominate the current. We present a generalization of the Harris current sheet equilibrium, which reproduces these features. The model ion distribution contains an additional element, viz. the quasi-adiabatic invariant of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015